Conjugating aryl, alkene and alkyne substituents also make the coupling more negative (sp2 and sp carbons are more electronegative than sp3 carbons). An extreme example of an exceptionally large π-acceptor effect is shown by the bis-protonated binol-derived dication, which has the largest gem coupling at an sp3 carbon reported.
Substituents like the halogens, alkoxy and amino groups are both σ-acceptors and π-donors. Both are (+) effects, so the couplings become more positive (i.e. smaller numbers), in some cases they are close to zero. Examples: 1, 2, 3, 4, 5, 6, 7.
Ring strain has a (+) effect on gem coupling. Thus in cyclopropane the coupling has increased from -12 to -4 Hz. Examples: 1, 2. The additional (+) effects of oxygen bring the coupling to +2 in aziridine and +5.5 in ethylene oxide. Examples: 1, 2, 3, 4, 5, 6.
Gem coupling in Unsaturated Carbons (sp2): The gem coupling in ethylene itself is +2.5 Hz, and most terminal alkenes have small couplings in the range of 1-3 Hz. Electronegative substituents (F, O) on the double bond behave as π-acceptors, with a (-) effect on the coupling, which can become close to zero for weakly accepting substituents (as in methyl vinyl sulfide). Electropositive substituents on the neighboring carbon (Si, Li) behave as π-donors with a (+) effect on the coupling. For α-trimethylsilylvinyllithium both substituents have a (+) effect, and result in an exceptionally large coupling, whereas in α-ethoxyvinyllithium the two substituents have opposite effects, and the coupling was too small to observe. Examples: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.
The large positive coupling in formaldehyde, and large negative coupling in ketene can be understood in these terms as well. For formaldehyde the oxygen substituent behaves as a strong σ-acceptor as well as a strong π-donor from the π-lone pair, both (+) effects, rendered especially large because of the short bond distance. Imines also show large positive 2J.
In a similar vein, for ketene the carbonyl substituent behaves as a strong π-acceptor, giving an usually large negative coupling. In allenes, the sp2-carbon "substituent" behaves as a weak electron acceptor (sp2 carbons are more electronegative than sp3 carbons), also leading to relatively large negative 2J values. Examples: 1, 2.
Geminal Proton-Proton Couplings Summary (2JH-H)
Geminal couplings between protons vary widely in sign and magnitude. There are both positive and negative substituent effects on the coupling, as summarized below. The remarkable feature is that σ and π acceptors have opposite effects on the coupling, as do σ and π donors.
Exercise: Identify the two multiplets below, get δ and J, and assign them to protons in the structure. Explain your assignment.