">1, 2.
Why is my Spectrum so Ugly? In this spectrum there is an accidental superposition of two protons, HM and HN, which are coupled to each other. All of the protons coupled to these two, HA, HB, HX, and HY, show strongly second order distorted multiplets, with extra lines and a non-centrosymmetric structure. A simple method to address this kind of problem is to take the spectrum in an aromatic solvent (or even just add a few drops of benzene-d6 or pyridine to the sample), which in many cases moves the protons around enough that the second-order effects are reduced or eliminated. When the spectrum is taken in benzene, HM and HN are shifted away from each other, and HA and HB now show more or less first order multiplets.
Methyl Region AMX3 ---> ABX3 ---> AA'X3
Methyl groups usually give reliably simple multiplets in NMR spectra. However, if a methyl group is coupled to a proton which is part of a strongly-coupled system, then its NMR signal can be complex and give misleading information. For examples: 1.
The kind of shift coincidences that cause strong second-order effects are especially pronounced in systems where the chemical shifts are identical by symmetry, In the example below of 2-butene epoxide both the CH3 and the CH signals are complex:
Approximate Nature of "AMX" Coupling ConstantsAn example of how virtual coupling effects can distort NMR coupling behavior is provided by an analysis of the multiplet at δ 1.6 in the spectrum below (protons M and N). The multiplet can be analyzed as a more or less first order pattern, giving the coupling constants shown.
However, a proper simulation of this 5-spin system with WINDNMR leads to quite different coupling constants between the M,N and A,B protons. This is because the A and B protons (at δ 3.8) are nearly superimposed, so that the apparent coupling constants (e.g. 5.5 and 7.5) tend towards the average of the actual ones (3.9 and 10.5). Note that JMN is measured nearly correctly in the first order analysis: 15.5 Hz, vs 15.9 in the simulation.