The current methodology for obtaining NOE spectra involves a pulse gradient method in which the enhanced signals are directly detected, without the artifacts introduced by subtraction, leading to very high quality NOE spectra ( DPFGSE-1D-NOESY). A steroid example below from the original paper (J. Am. Chem. Soc. 1994, 116, 6037).
Measurement of H-H distances. The size of an NOE enhancement is strongly related to the distance between the two protons, but it is also a function of other relaxation processes operating on the "receiving" proton. Distances between protons are more directly related to the rate of buildup of the NOE enhancement. A series of experiments are carried out with inceasing mixing times, and the increase in NOE enhancement is followed. The closest protons will show the most rapid build-up rates of the NOE. This sort of experiment, usually performed using the 2D NOESY technique, can map H-H distances in complicated molecules ranging from large natural products, to polypeptides, small pieces of DNA and even small proteins.
NOE in Carbon-13 NMR Spectroscopy
13C spectra are commonly measured with noise-modulated 1H decoupling. In most molecules the C-H carbons are relaxed almost entirely by the DD mechanism. Decoupling of the protons thus gives an NOE of the carbon signals. The carbons achieve a population difference like that of protons, so that much larger NOE's are observed, as high as 199% if the carbon is relaxed 100% by the DD mechanism.
The energy levels of four spin states for a 13C-1H pair is shown. Decoupling the protons equalizes the populations of the CβHβ and CβHα states, as well as the CαHα and CαHβ states. If ω2 dominates, then the population difference between the Cα and Cβ energy levels is determined by the energy difference between the CβHβ and CαHα states, which is four times as large as the energy difference between the CαHα and CβHα states, hence one expects a much large NOE enhancement than for the H-H situation.
Coupled 13C NMR Spectra with NOE. The measurement of undecoupled 13C NMR spectra is usually very time consuming since many of the carbon signals are split into complex multiplets, and there is no NOE enhancement of signal intensities. However, a nearly maximum NOE enhancement can be achieved by use of gated decoupling, in which the decoupler is kept on during a delay period when the NOE enhancement builds up, but turned off during acquisition of the FID, so that fully coupled spectra are obtained. This works because the decoupling effect turns on and off nearly instantaneously (microseconds), whereas the NOE enhancement builds up and decays on the time scale of T1 (seconds).
Integration of Carbon Spectra. 13C NMR spectra cannot usually be accurately integrated since there are several effects which change the areas of the peaks:
1. Spectra are often run under saturation conditions with insufficient delay time between pulses for full recovery of magnetization. Since T1 of carbons vary between 0.1 to >100 sec, individual pulses have to be as much as 500 seconds apart (5T1) to permit complete relaxation of all carbons if accurate integrations are to be obtained.
2. The Nuclear Overhauser Effect increases the area of individual peaks depending on the extent to which DD relaxation versus other pathways relax a particular carbon.
Spectra with minimal NOE enhancement can be obtained by using the inverse gated decoupling technique, in which the decoupler is on only during the short acquisition time, but off otherwise, so that only a small NOE enhancement builds up.
An alternative technique for obtaining integrable spectra is to use the relaxation reagent Cr(acac)3, which will shorten T1 for all carbons by the action of unpaired electrons on the chromium. This will both reduce the saturation problems (by decreasing T1) and reduce or eliminate the NOE enhancement (by reducing or eliminating proton-carbon DD relaxation). Unfortunately, it is not feasible to add Cr(acac)3 to all samples.
Below a series of 13C NMR spectra which illustrate the problems in achieving accurate integrations of 13C NMR signals, whose area can be strongly affected both by saturation effects (for quaternary carbons with very long T1 values), and by the NOE enhancement.
Heteronuclear NOE
A number of heteronuclei have negative gyromagnetic ratios. Such nuclei will have the sign of the NOE reversed, leading to reduction in intensity, nulled peaks, or negative signals if proton-X DD relaxation is present and proton decoupling is being used. Some common spin 1/2 nuclei with negative γ are 15N, 29Si, and 119Sn. If spectra of these nuclei are taken with proton decoupling, then the NOE will reduce the intensity of the signals, or even make them negative. It is usually advantageous to take such spectra with pulse techniques that involve polarization transfer from proton to the heteronucleus to minimize the negative NOE.
NOE is observed only for nuclei relaxing by the dipole-dipole (DD) mechanism. For most quadrupolar nuclei (6Li is a rare exception) the principal relaxation pathway is the QR mechanism, so that little or no NOE can be detected. Even many spin ½ nuclei with large chemical shift ranges (e.g., 77Se, 199Hg, 125Te) show no NOE as a result of proton decoupling because the principal relaxation pathway is the CSA mechanism (Chemical Shift Anisotropy).